Exam Seat No:_____

C.U.SHAH UNIVERSITY Winter Examination-2015

Subject Name: Complex Analysis – I

Subject Code:	5SC01MTC3	Branch :M.Sc.(Mathematics)	
Semester: 1	Date : 04/12/2015	Time :10:30 To 1:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)	
	a.	Prove that $z^2 + \bar{z}^2 = 2$ represents a hyperbola.	(02)	
	b.	If $f(z)$ is real and analytic in domain then prove that f is constant.		
	c.	Prove that $\sin h(iz) = i \sin z$.		
	d.	State polar form of C – R equation.	(01)	
	e.	Find logarithmic value of <i>i</i> .	(01)	
Q-2	a)	Attempt all questions Suppose $f(z) = u + iv$, $z_0 = x_0 + iy_0$ and $w_0 = u_0 + iv_0$, then prove that $\lim_{z \to z_0} f(z) = w_0$ if and only if $\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0$ and $\lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0$	(14) (06)	
	b)	Let \mathbb{C} be the collection of all complex numbers. Prove that $(\mathbb{C}, +)$ is an abelian group	(04)	
	c)	group Prove that $(1 + i\sqrt{3})^n + (1 - i\sqrt{3})^n = 2^{n+1} \cos(\frac{n\pi}{3}).$	(04)	
		OR		
Q-2	a)	Attempt all questions Suppose f is differentiable at z_0 and g is differentiable at $f(z_0)$. Then prove that gof is differentiable at z_0 and $\frac{d}{dz}[gof(z)] = g'(f(z_0)f'(z_0))$.	(14) (06)	

b) Prove that composition of continuous function is continuous. (04)

Page 1 || 3

	c)	Prove that $f(z) = z ^2$ is differentiable only at origin.	(04)
03	•)	Attempt all questions $ z = z $ is unreferituable only at origin.	(14)
Q-3	a)		
	a) h)	State and prove $C - R$ equation for an analytic function.	(06) (04)
	b)	Show that $u(x, y) = 2x - x^3 + 3xy^2$ is harmonic. Find harmonic conjugate of $u(x, y)$.	(04)
	c)	Prove that $e^{\bar{z}}$ is nowhere differentiable.	(04)
		OR	
Q-3	a)	State and prove sufficient condition for a function to be an analytic function.	(06)
	b)	Prove that $sin^{-1}z = -i\log(iz + \sqrt{1-z^2})$.	(04)
	c)	Find all possible roots of $(-8 - i \ 8 \sqrt{3})^{\frac{1}{4}}$	(04)
		SECTION – II	
Q-4	9	Attempt the Following questions If a backware $q_{1} q_{2}(t) = 1$ with $q_{2}(t) = 1$	(07) (02)
	а.	If <i>c</i> be the curve $c: z(t) = 1 - 3it, t \in [-1,1]$ where $x(t) = 1$ y(t) = -3t then find arc length of the curve.	(02)
	b.	If $z_n \to z$ then prove that $ z_n \to z $.	(02)
	c.	Write Maclaurin's series of cos z.	(01)
	d.	Give an example of removable singularity.	(01)
	e.	Obtain residue of $f(z) = \frac{9z+i}{z(z^2+1)}$ at $z = i$.	(01)
Q-5		Attempt all questions	(14)
	a)	Evaluate: $\int_{-\infty}^{\infty} \frac{dx}{(x+1)(x^2+2)}.$	(05)
	L)		(05)
	D)	Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series for (a) $ z < 1$	(05)
		(b) $1 < z < 3$.	
	c)	Evaluate $\int_c \frac{z+2}{z} dz$ where c is the lower half of $z = 2e^{i\theta}$.	(04)
		OR	
Q-5	a)	Find upper bound for the absolute value of the integral $\int_c \frac{z+4}{z^3-1} dz$ where	(05)
		c: z = 2 from $z = 2$ to $z = 2i$ that lies in first quadrant.	
	b)	State and prove Residue theorem.	(05)
	c)	Evaluate $\int dz$ where $a = a = 2i + 4$ (b) $b = 5$	(04)
	- /	Evaluate $\int_{c} \frac{dz}{z^{2}+9}$ where <i>c</i> is (a) $ z - 3i = 4$ (b) $ z = 5$.	x/

Page 2 || 3

Attempt all questions Q-6

Q-6

- a) Let c be a simple closed contour. Suppose f is analytic function within and on c. (07) If z_0 is a point interior to c then prove that $f'(z_0) = \frac{1}{2\pi i} \int_c \frac{f(z)}{(z-z_0)^2} dz$. (07)
- **b**) State and prove Taylor's theorem.

OR

- **Attempt all Questions** a) State and prove Cauchy's inequality and deduce Liouville's theorem. (07)
 - **b**) If four points z_1, z_2, z_3, z_4 of the z plane map on to the points w_1, w_2, w_3, w_4 of (07)the W -plane respectively under the bilinear transformation then prove that $\frac{(w_1 - w_2)(w_3 - w_4)}{(w_1 - w_4)(w_3 - w_2)} = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_4)(z_3 - z_2)}.$ Also Find bilinear transformation that maps the point $z_1 = 0$, $z_2 = 1$, $z_3 = \infty$ on to $w_1 = -1$, $w_2 = -i$, $w_3 = 1$ respectively.

Page 3 || 3

